If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+73x+265=0
a = 4; b = 73; c = +265;
Δ = b2-4ac
Δ = 732-4·4·265
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(73)-33}{2*4}=\frac{-106}{8} =-13+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(73)+33}{2*4}=\frac{-40}{8} =-5 $
| 4y+6y+30=180 | | 8+3x-5=-2x-2 | | -5.2(x-3.75)=20.8 | | 8+3x-5=(-2)x-2 | | 5.2(x-3.5)=-15.6 | | 15x+3(x-5)=12(x+1)-3 | | 5.2(x-3.5)=15.6 | | 4x/10+4=-1 | | -4(m+4)-m-3=-5(m+5)+6 | | 10+2x=4+3x+1 | | 20=-3.2(c-4.2) | | -9(v+2)+3v+7=5v+7 | | 9/x-8=2 | | 6-8y=1 | | 12(x+3)=4x-12 | | 5(3)^x-7=13 | | 3t+1/8=t+9/16+t-7/16 | | 22=x+x+2x-2 | | z/19-4=8 | | y+20=11y | | 560x-34=310+941 | | 1/x-2+1/x=1/4 | | 16a=-24 | | 4(x-8)+10=8x-10 | | 2x-3^2/7=4 | | 4x^2-60x+176=0 | | H(x)=-1/225x(2)+2/3x | | 3x-5÷10=7 | | X²-21x+108=0 | | 35+3x-11=33 | | (4+w)(4w+3)=0 | | 5(1-7x)+7x=135 |